平衡二叉树:对有序序列的一种优化,可以用来高效的查找和遍历等的一种树形结构。
2:原型
GTree* g_tree_new (GCompareFunc key_compare_func); GTree* g_tree_new_with_data (GCompareDataFunc key_compare_func, gpointer key_compare_data); GTree* g_tree_new_full (GCompareDataFunc key_compare_func, gpointer key_compare_data, GDestroyNotify key_destroy_func, GDestroyNotify value_destroy_func); void g_tree_insert (GTree *tree, gpointer key, gpointer value); void g_tree_replace (GTree *tree, gpointer key, gpointer value); gint g_tree_nnodes (GTree *tree); gint g_tree_height (GTree *tree); gpointer g_tree_lookup (GTree *tree, gconstpointer key); gboolean g_tree_lookup_extended (GTree *tree, gconstpointer lookup_key, gpointer *orig_key, gpointer *value); void g_tree_foreach (GTree *tree, GTraverseFunc func, gpointer user_data); gpointer g_tree_search (GTree *tree, GCompareFunc search_func, gconstpointer user_data); gboolean g_tree_remove (GTree *tree, gconstpointer key); gboolean g_tree_steal (GTree *tree, gconstpointer key); void g_tree_destroy (GTree *tree);3:实例
#include4:结果#include #include struct map { int key; char *value; } m[10] = { {0,"zero"}, {1,"one"}, {2,"two"}, {3,"three"}, {4,"four"}, {5,"five"}, {6,"six"}, {7,"seven"}, {8,"eight"}, {9,"nine"}, }; typedef struct map map; static gint myCompare(gconstpointer p1, gconstpointer p2) { const char *a = p1; const char *b = p2; return *a - *b; } static gint mySearch(gconstpointer p1, gconstpointer p2) { return myCompare(p1, p2); } static gint myTraverse(gpointer key, gpointer value, gpointer fmt) { g_printf(fmt, *(gint*)key, (gchar*)value); return FALSE; } static void test_avl_tree(void) { GTree *tree; gint i; // GTree* g_tree_new(GCompareFunc key_compare_func); tree = g_tree_new(myCompare); // void g_tree_insert(GTree *tree, gpointer key, gpointer value); for (i = 0; i < sizeof(m)/sizeof(m[0]); i++) g_tree_insert(tree, &m[i].key, m[i].value); // void g_tree_foreach(GTree *tree, GTraverseFunc func, gpointer user_data); g_printf("Now the tree:\n"); g_tree_foreach(tree, myTraverse, "Key:\t%d\t\tVaule:\t%s\n"); // gint g_tree_nnodes(GTree *tree); g_printf("The tree should have '%d' items now.\t\tResult: %d.\n", 10, g_tree_nnodes(tree)); // gint g_tree_height(GTree *tree); g_printf("The height of tree is '%d' now.\n", g_tree_height(tree)); // void g_tree_replace(GTree *tree, gpointer key, gpointer value); g_tree_replace(tree, &m[3].key, "3333"); g_printf("Now the vaule of '%d' should be '3333' now.\n", m[3].key); g_tree_foreach(tree, myTraverse, "Key:\t%d\t\tVaule:\t%s\n"); gchar *tmp = NULL; // gpointer g_tree_lookup(GTree *tree, gconstpointer key); g_printf("Now the vaule of '%d' should be '%s' now[lookup].\n", m[3].key, (tmp = (gchar *)g_tree_lookup(tree, &m[3].key)) != NULL ? tmp : NULL); // gboolean g_tree_remove(GTree *tree, gconstpointer key); gboolean b = g_tree_remove(tree, &m[3].key); g_printf("The key '%d' has %sbeen found and removed now.\n", m[3].key, b ? "" : "NOT"); // gpointer g_tree_search(GTree *tree, GCompareFunc search_func, gconstpointer user_data); g_printf("Now the vaule which should be removed of '%d' should be '%s' now[search].\n", m[3].key, (tmp = (gchar *)g_tree_search(tree, mySearch, &m[3].key)) != NULL ? tmp : NULL); g_printf("Now the tree look like:\n"); g_tree_foreach(tree, myTraverse, "Key:\t%d\t\tVaule:\t%s\n"); // void g_tree_destroy(GTree *tree); g_tree_destroy(tree); } int main(void) { printf("BEGIN:\n************************************************************\n"); test_avl_tree(); printf("\n************************************************************\nDONE\n"); return 0; }
BEGIN: ************************************************************ Now the tree: Key: 0 Vaule: zero Key: 1 Vaule: one Key: 2 Vaule: two Key: 3 Vaule: three Key: 4 Vaule: four Key: 5 Vaule: five Key: 6 Vaule: six Key: 7 Vaule: seven Key: 8 Vaule: eight Key: 9 Vaule: nine The tree should have '10' items now. Result: 10. The height of tree is '4' now. Now the vaule of '3' should be '3333' now. Key: 0 Vaule: zero Key: 1 Vaule: one Key: 2 Vaule: two Key: 3 Vaule: 3333 Key: 4 Vaule: four Key: 5 Vaule: five Key: 6 Vaule: six Key: 7 Vaule: seven Key: 8 Vaule: eight Key: 9 Vaule: nine Now the vaule of '3' should be '3333' now[lookup]. The key '3' has been found and removed now. Now the vaule which should be removed of '3' should be '(null)' now[search]. Now the tree look like: Key: 0 Vaule: zero Key: 1 Vaule: one Key: 2 Vaule: two Key: 4 Vaule: four Key: 5 Vaule: five Key: 6 Vaule: six Key: 7 Vaule: seven Key: 8 Vaule: eight Key: 9 Vaule: nine ************************************************************ DONE
5:小结
- 创建: g_tree_new()
- 插入: g_tree_insert()
- 查找: g_tree_lookup() g_tree_search()
- 删除: g_tree_remove()
- 属性: g_tree_nnodes() g_tree_height()
- 遍历: g_tree_foreach()
- 销毁: g_tree_destroy()